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An investigation on sti!ened plates has been conducted for the "rst time to
determine the elastic parameters as well as the cross-sectional dimensions of
rectangular sti!eners from experimental modal data and "nite element predictions,
using model-updating technique. The problem is formulated as a global
minimization of the error function, de"ned by the di!erence in modal properties as
predicted from the "nite element modelling to that obtained &&experimentally''. The
parameter estimation problem is solved using an iterative-gradient-based
minimization algorithm and can start from di!erent randomly selected set of initial
parameters. The Levenberg}Marquardt algorithm has been implemented to
minimize the error function. Proper bounds are realistically chosen for the selection
of the initial values of the parameters. The position, physical properties and
orientation of sti!eners create considerable variations in the modal properties as
compared with the bare plates of similar construction. This makes each of the
sti!ened plate identi"cation problem rather unique. The position of sti!eners as
well as its orientation makes certain measurement points more suitable for
comparing analytical and experimental mode shapes. The optimum measurement
set of co-ordinates, which can be used for the purpose of identi"cation, is thus case
speci"c. The geometrical properties of sti!ener cross-section also a!ect the modes.
Inclusion of di!erent sets of modes in noisy environment and the di!erences in the
estimated parameters are studied. A few simulated examples are presented to
investigate the uniqueness and convergence of results. The methodology is found to
be very accurate and robust.

( 2000 Academic Press
1. INTRODUCTION

The "nite element method, though versatile, is always based upon certain
simplifying assumptions, which can only be veri"ed by physical testing, such as
modal testing. Correction of the "nite element models by processing dynamic
test data is an active area of research for nearly three decades [1}3]. Various
methods have been suggested, but it appears that none of them has been treated
as generally acceptable. It also appears that the theoretical knowledge bases
as well as the experimental constraints are application-speci"c and may di!er
considerably from one "eld to the other [4]. As such, speci"c case studies are
0022-460X/00/110099#26 $35.00/0 ( 2000 Academic Press
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needed before any such technique can be applied to practical structures with any
degree of con"dence.

Sti!ened plates are extensively used in structures where weight saving is
of considerable interest yet maintaining the required sti!ness [5]. Such
high-performance structures, e.g., aircraft, ship panel, submersible, etc., demand
accurate determination of their dynamic characteristics. These dynamic
characteristics are functions of physical properties (material properties and
geometry), boundary conditions and applied loading environment. For the
determination of material property parameters, destructive static testing is
universally accepted, as described in relevant standards. There are alternative
non-destructive static testing methods for determining only the elastic parameters,
but they are less accepted among the engineering community. The destructive static
tests are conducted under strict speci"cation of sample preparation and testing
environment and the results are closer to the actual elastic parameters. The main
drawback of the static testing is that the deformation con"guration which can be
attained at the time of testing can at best be of simple geometry, such as a shape
having constant curvature. Structures deform at complicated con"guration in the
actual operating environment at higher modes. Due to the increasing use of
structures in complicated high-performance environment their behavior under
higher mode of deformation has become increasingly important. This can be done
through dynamic testing to compute the elastic parameters when at least
a considerable number of higher modes are involved. Hence, use of dynamic testing
forms a better option for obtaining more accurate solution to the problem. Testing
of the actual structure which need not take into account the usual manufacturing
variances associated with the material properties will render the subsequent
analysis more accurate.

The literature on the subject of system identi"cation is vast [1] and no attempt
will be made here to review it. The problem here is not an identi"cation problem in
the widest sense and can be described more appropriately under the headding of
model updating [2]. Two closely related "elds in dynamic system identi"cation are
detection of damages [3] and characterization of materials, the latter being of
major interest here. The model-updating techniques di!er mainly in the selection of
parameters. Earlier papers such as those by Baruch and Bar Itzhack [6], Berman
[7], Berman and Nagy [8] allowed any symmetric changes to the mass and sti!ness
matrices. Later the approach of using physical parameters was made more popular
by Chen and Garba [9], Wei and Janter [10] and Wei et al. [11]. Unique methods
have been presented for determining Young's modulus and the Poisson ratio of
isotropic plates [12, 13]. The concept of experimental modal analysis has been used
successfully over the decades to solve such problems [14].

Most of the previous work uses only the frequency information as, with the
present state-of-the-art of instrumentation, it is di$cult to measure mode shapes
accurately. Messin [15] suggested a standard $0)15% error in frequency
measurement for standard hammer testing, whereas the error in mode shape can be
20 times worse. However, the paper by Grediac [16] indicates that sophisticated
optical methods may improve the accuracy of measured mode shapes and these
advanced techniques are likely to dominate in future.
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The methodology of model updating so far is mostly applied to small #at plate or
beam specimens in closely controlled laboratory environment. However, it will be
much more realistic to test the sti!ened structure as a whole. Usually, structures are
tested under free boundary conditions [17]. To apply this methodology to existing
structures, all possible boundary conditions in real situation and their e!ect on the
"nal estimated parameters must be ascertained. The principles developed are
applied to many complicated structural forms but the application to sti!ened
plates/shells is non-existent.

In this paper, a non-destructive evaluation method is presented for the
determination of globally averaged elastic parameters, as well as the dimensions of
rectangular sti!eners of isotropic sti!ened plates. It is left to the engineer's
judgement to select the parameters responsible for the discrepancies between the
experimental and the analytical results. The supplied values used in real application
of the cross-sectional areas of sti!eners are in fact the average cross-sectional
dimensions, sampled at certain places and then averaged. The sensitivity of the
modal parameters with respect to these geometrical parameters are substantial in
case of certain modes, thereby justifying their inclusion as updating parameters.
Hence, a slight non-uniformity in cross-section may well be misinterpreted as
a corresponding change in material properties, which is actually not. Thus, by
including the cross-sectional dimensions as a parameter set, what is e!ectively
obtained is a more realistic average value of cross-sectional properties of the
sti!ener, which re"nes the further analysis. In the case of sti!ened plates, the
changes in dimensions of the sti!ener contribute substantially to the changes in
modal properties at certain modes; therefore the main engineering purpose is not to
ignore the sti!ener geometry and consider it as variables in the minimization
process along with the material constants. The use of sti!ener causes considerable
changes to the frequency range as well as the type of mode shapes as compared to
a bare plate of the same size and mass. The e!ect of position, orientation and
physical dimensions of sti!eners makes each of the problem case-speci"c and
therefore needs special attention. The position as well as the orientation of sti!eners
makes certain measurement points more suitable for extracting mode shape
information. Particular attention is given to the study of the e!ect of random noise
on the estimated parameters.

2. NUMERICAL SIMULATION OF EXPERIMENTAL DATA

Unlike an ideal situation in mathematical modelling, experimental results
contain &&true'' information, which may turn out to be an obstacle to the study of
a particular feature. For example, experimental modes are complex due to
the presence of damping. The boundary conditions are never perfectly achieved.
The data contain all types of noises*both uncorrelated and correlated to the
measurements. There may be &&manufacturing variances'' between parts of the
structure. All these factors taken together make the localization of error di$cult.

Here a simple and arti"cial &&numerical experiment'' is conducted to generate
data, which contains only the information sought. In this way, the one-to-one
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correspondence between errors and parameters is established. It is very di$cult, if
not impossible, to obtain the theoretical solution of practical structures, such as
sti!ened plates. Hence, it has been decided to use a "nite element technique to
generate the necessary &&experimental'' modal database. An eight-noded
"ve-degrees-of-freedom (d.o.f. ) per node quadratic isoparametric plate-bending
element is used for modelling the plate, whereas a three-noded isoparametric beam
element having "ve d.o.f. per node is used to model the sti!ener [18, 19]. A set of
&&reference'' parameters is realistically chosen. It is assumed that the geometry of the
plate and mass density are accurately determined and do not vary from the
reference solution and they are established in advance. The boundary conditions
are assumed to act &&perfectly''. The quality of the mesh density is chosen in such
a manner that the resulting modal parameters converge within the range of usual
&&experimental'' accuracy required for successful model updating. For frequencies
this is kept as 1% of the nominal value.

Although all practical structures are continuous, we assume throughout that the
hypothetical real structure is discrete. Only the "rst few natural frequencies, along
with the corresponding mode shapes, are assumed to be &&measured'' and sampled
at certain selected co-ordinates, which &&happen'' to coincide with the "nite element
nodes of the corresponding theoretical model. This incomplete noise-free modal
database is available for identi"cation purpose, although in actual experiments the
resolution of measured frequency can be increased upto a certain limit, but not
without decreasing bandwidth. Thus, a realistic limit exists for the precision level
that can be achieved, given the frequency range of interest.

3. SENSITIVITY ANALYSIS

A sensitivity analysis is carried out to determine the &&physical'' involvement of
di!erent parameters. A set of parameters is chosen "rst as reference; then a "nite
element analysis is carried out to determine the eigenfrequencies and they are used
as references. Then each parameter is increased from its reference by 10% in turn
and a new "nite element analysis is carried out. The normalized value of increased
frequency is taken as the relative sensitivity of that parameter at that particular
mode.

The normalized sensitivity versus mode diagram provides a basis to decide the
inclusion of a particular set of modes in the system identi"cation algorithm.
Frequency sensitivity of Young's modulus and the Poisson ratio shows a #at
relationship, which means they are equally sensitive to all modes and are not shown
here.

4. SELECTION OF BOUNDS

The algorithm requires initial guess of the parameters to be updated. Usually
such data are available from the manufacturer. But in case it is not fully relied upon,
realistic upper and lower bounds are estimated from maximum statistical variances
and from nominal values given in established standards for material properties. It is
assumed that the bounds are not wide apart. The algorithm starts from a randomly
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selected parameter set, if initial guess is not given:
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is the nominal value of the parameter, pL
i

the lower bound of the
parameter, pU

i
the upper bound of the parameter and g the deterministic design

allowable.

5. FINITE ELEMENT MODELLING

The same eight-noded "ve-d.o.f. per node quadratic isoparametric plate-bending
element is used to model the plate portion, whereas, a three-noded isoparametric
beam element having "ve d.o.f.s per node has been chosen to model the sti!ener of
the sti!ened plate, as is used in simulating experimental results. The element can
incorporate transverse shear deformation through a "rst order approximation.
Only rectangular sti!ener is considered here. The sti!ener can be oriented
arbitrarily within the plate.

A simultaneous iteration algorithm has been implemented to calculate the free
undamped modal properties of the structure [20].

6. GENERATION OF NOISY DATA

Noisy data sets are generated by adding random noise with known statistical
properties to the noise-free reference data sets. Here uniformly distributed random
noise is generated using

X*"X (1#ra), (3)

where X* is the noisy data (frequency or component of eigenvector), X the
noise-free reference data, r the uniformly distributed sequence of random numbers
between !1 and #1 and a the amplitude of noise.

7. FORMATION OF OBJECTIVE FUNCTIONS

The objective function consists of three terms, one relating to the error in natural
frequencies Eu , another relating to the error in mode shapes E

(
, and the third one

for internal penalty which &&explodes'' at the boundary [21], E
p
. These individual

terms have relative weights. The total error term is
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where=u is the weighting factor to the di!erences in natural frequencies,=
(
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weighting factor to the di!erences in mode shapes and=

p
the weighting factor to

the internal penalty functions.
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The objective function for frequency error is just a weighted sum of the square of
the di!erences in the natural frequencies, provided the modes are paired correctly.
This is taken care of by calculating the modal assurance criteria (MAC) correlation
between two pairing modes. For exactly correlated modes, the value is 1, and for
uncorrelated modes, the value is 0 [14]:
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where=
wj

is the weighting factor to the jth natural frequency, and u
mj

and u
aj

are
the jth measured and analytical natural frequencies. nused is the number of modes
considered. nused(M, where M is the number of measured modes. The individual
frequencies can also be weighted di!erently, but are kept the same here.

The mode shape error function is
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where=
(j

is the weight associated with the jth mode shapes, and /
mj

and /
aj

are the
jth measured and analytical mode shapes. Only a limited number of d.o.f.s picked
out from the analytical mode shapes are paired with the corresponding measured
set of co-ordinates. This depends upon the sensitivity of that displacement value
with respect to the parameter. Only a subset of the vertical displacements is
considered here.

The measurement points which are actually used for updating depend upon the
modes selected. The data set which produces low signal levels is not considered for
identi"cation as they can create numerical instability in addition to being a!ected
very much in the presence of random error. The presence of sti!eners makes this
problem complicated and speci"c as it depends upon the number, orientation and
dimension of sti!eners.

Internal penalty is imposed indirectly by augmenting the penalty term to the
objective function,

E
p
"
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+
j/1

rr(i) C
1)0

boundu(i)!x(i)
#

1)0
x(i)!boundl(i)D. (7)

Here, x(i) is the parameter, boundu(i) and boundl(i) are the upper and lower bounds
of the ith parameter respectively. The value of rr(i) is reduced in subsequent
iterations, as the convergence improves, ncons is the number of parameters having
constraints.

The relative weighting factor between the frequencies and mode shapes needs
very careful consideration. Not only are the mode shapes measured with less
accuracy, but they are also less sensitive to the physical parameters. But in most
practical situations, there may not be su$ciently available measured frequencies,
and use of mode shape information is unavoidable. The relative weight magni"es
the small di!erence in mode shapes, thus also increasing the error associated with it
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and this error propagates through the system identi"cation algorithm to pollute the
estimated parameters.

A frequent source of trouble is the disparity of weight between the various
components of the objective function, and thereby one part may overpower the
other. Here, the orders of the di!erent parts of the objective function are generally
made nearly the same to make the system identi"cation problem well conditioned.
However, whenever su$cient frequency measurements are available, they are
weighted more than the eigenvectors.

8. THE MINIMIZATION ALGORITHM

The method is based on the minimization of the sum of the di!erences of the
modal properties (i.e. eigenfrequencies and mode shapes) between the predicted
values from "nite element analysis and those determined &&experimentally''. The
algorithm can use any prede"ned number of co-ordinates and frequencies in the
order de"ned by the user.

Among the gradient based multivariable optimization methods available,
Cauchy's steepest descent method works well when the initial point is far away
from the minimum point and Newton's method works well when the initial guess is
nearer [22]. Since it is not known whether the initial guess is away from the
minimum or close to it, the Levenberg}Marquardt algorithm [23] is implemented
for the "rst time to solve such type of problems, which combines both of the above
features. Therefore, it is more e$cient in terms of speed of convergence. The
algorithm uses a non-linear least-squares solution routine for the solution of the
system of equations to estimate the parameters.

The algorithm can restart automatically if stuck to a local minimum after
a prede"ned number of iterations. Its choice of a proper step size for minimization
is adaptive. Forward di!erence approximation is made in calculating the derivative
of objective functions with respect to the parameters, but the derivatives may also
be supplied externally by other e$cient methods [24, 25].

The #owchart in Figure 1 describes the whole process.

9. ORGANIZATION OF STUDY

A variety of sti!ened plate problems having a varying number of sti!eners have
been studied [27}32].

The methodology presented is applicable in principle to any structural
con"guration of the plate as well as the sti!ener. Material properties of the plate
and sti!ener are estimated simultaneously.

The procedure is repeated for both noise-free and noisy data sets. The maximum
number of iterations is limited to 10. While studying the e!ect of random noise, 10
iterations are taken for each data set which are generated using a uniformly
distributed random number generator, i.e., the parameter estimation algorithm is
run 100 times for each set of selected &&experimental'' modal data sets. However,
a typical set of convergence curves from a particular initial parameter set for each



Figure 1. Flow chart of the package.
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problem has been presented in the paper. The algorithm has been tested
for di!erent levels of upper and lower bounds. However, the bounds considered
in the following examples are calculated putting g"$30% in equations (1)
and (2). The value of rr(i) in equation (7) has been adjusted for each problem
individually.



ESTIMATION OF ELASTIC AND GEOMETRICAL PARAMETERS OF STIFFENED PLATES 107
10. NUMERICAL RESULTS AND DISCUSSION

10.1. PROBLEM 1: UNIAXIALLY STIFFENED CLAMPED PLATE WITH A SINGLE STIFFENER

The geometrical and material property parameters are given in Figure 2 [27}29].
The parameters selected are the Young's modulus E, the Poisson ratio l, height of
the sti!ener h, and the thickness of the sti!ener th. Experimental results are
available in reference [27]. Details of the &&measurement'' points used in &&numerical
experiments'' are given in Figure 3. The convergence of the "rst 12 natural
frequencies are presented along with the increasing number of mesh divisions in
Table 1. This investigation includes the "rst 7 modes; 12]12 mesh division is used.
Clamped boundary conditions are assumed. Frequencies obtained are compared
with standard "nite element results in Table 2 and the agreement is found to be
reasonably good.

As explained earlier, relevant choice of mode is essential for identi"cation
program. Observations of the mode shapes in Figure 4 and frequency sensitivity
in Figure 5 indicates that the best choice of modes for identifying the height
of the sti!ener is 1, 2 and 7; similarly, that of identifying thickness is 1, 3
and 4. Convergence characteristics from a typical set of initial values of
parameters for di!erent mode combinations are shown in Figure 6. No signi"cant
di!erence in convergence is noticed for E values. The best convergence
characteristics for height of the sti!ener is with the mode combination 1, 4, 7.
Thickness is found to converge within two iterations with the same combinations of
Figure 2. Uniaxially sti!ened clamped plate with single sti!ener: ¸"203 mm, t
p
"1)37 mm,

t
s
"6)35 mm, h

s
"12)7 mm, E"68)9 GPa, l"0)3, o"2670 kg/m3.



Figure 3. Measurement locations for Problems 1 and 2: L, measurement locations.
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modes. In general, the above mode combinations are found to be the best for all
four parameters.

As it is necessary to estimate the e!ect of errors in the eigenvalues and
eigenvectors on the estimated parameters, 1% random error in measured
eigenvalues and 5 and 10% errors in measured eigenvectors are introduced
respectively. The mean values and standard deviations are computed for at least 10
sets of noisy data and presented in Table 3. It is observed that estimated parameters
are most stable for E when the "rst 5 modes are included. For the Poisson ratio, no
considerable di!erences exist. This may be due to the imposition of strict internal
penalty parameter rr(i) as de"ned in equation (7) in initial stages of iterations.
Height of the sti!ener is best estimated when mode 7 is included. Similarly, best
estimation for thickness is obtained when mode 4 is included. The convergence
characteristics remain similar in the presence of random noise.

It is observed that the results are independent of the starting points in a noisy
environment and depend only upon the level of noise present much in consonance
with others [26]. In the no-noise cases, the parameters ultimately converge to the
nominal values as shown in Figure 2. Here, the value of the objective function
becomes exactly zero after minimization.



TABLE 1

Convergence of natural frequencies

Mode
Mesh
size 1 2 3 4 5 6 7 8 9 10 11 12

Problem 1 4]4 830)65 842)58 1173)72 1188)67 1696)32 1711)42 1930)2 4665)14 4704)37 5282)83 9506)32 11833)3
(single 8]8 744)23 780)30 1102)29 1125)17 1624)32 1662)29 1692)33 1993)41 2419)5 2463)12 2516)73 2517)20

sti!ener) 12]12 728)22 763)65 1020)06 1034)32 1466)80 1472)93 1600)49 1917)63 2100)19 2104)22 2280)79 2286)65
16]16 726)72 762)24 1013)37 1027)35 1447)87 1453)23 1596)93 1906)14 2059)45 2062)38 2250)13 2256)88
18]18 726)54 762)07 1012)09 1026)65 1445)91 1451)23 1596)33 1904)34 2054)88 2057)77 2246)26 2253)17

Problem 2 4]4 478)39 875)37 875)37 1145)76 1378)15 1582)58 1798)02 1798)02 2794)54 4702)97 4702)97 6847)93
(cross 8]8 349)31 705)82 705)82 937)66 1254)27 1303)21 1503)47 1503)47 2055)3 2055)3 2214)07 2232)09

sti!ener) 12]12 346)79 692)55 692)55 890)75 1193)32 1274)15 1385)5 1385)5 1932)97 1932)97 2000)15 2014)90
16]16 346)59 691)41 691)41 887)36 1186)71 1270)80 1375)89 1375)89 1914)58 1914)58 1980)38 1990)99
18]18 346)56 691)27 691)27 887)03 1185)98 1270)28 1374)85 1374)85 1912)23 1912)23 1978)05 1988)11

Problem 3 10]4 1116)43 1541)50 1541)50 1672)14 1789)08 1850)48 2111)30 2129)41 2531)90 2533)27 3219)37 4042)01
(multiple 12]6 1077)91 1423)40 1454)67 1619)51 1710)81 1729)96 1818)80 1842)49 2238)73 2370)91 2891)72 2948)56
sti!ener) 14]8 1081)48 1352)26 1368)46 1520)31 1603)76 1655)07 1752)55 1801)45 2150)95 2265)66 2877)98 2877)98

16]10 1060)05 1291)94 1310)67 1441)77 1503)87 1537)08 1603)67 1640)71 1939)35 2160)17 2729)50 2754)02
18]12 1061)85 1279)99 1296)48 1415)87 1475)23 1516)30 1576)39 1616)24 1898)08 2138)58 2662)97 2700)02
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TABLE 2

Comparison of natural frequencies

Mode number

References 1 2 3 4 5 6

Problem 1 Olson and Hazell [27] 718)1 751)4 997)4 1007)1 1419)8 1424)3
(single sti!ener) Koko and Olson [28] 736)8 769)4 1019)6 1032)3 1483)7 1488)3

Present 728)22 763)65 1020)06 1034)32 1466)80 1472)93

Problem 2 Wu and Liu [30] 338)08 665)35 696)55 864)94 * *

(cross sti!ener) Sheikh [31] 333)15 657)33 687)33 865)27 * *

Present 346)79 692)55 692)55 890)75 1193)32 1274)15

Problem 3 Jiang and Olson [32] 1120)7 1304)8 1312)3 1423)6 1479)4 1524)0
(multiple sti!ener) Koko and Olson [28] 1112)4 1300)2 1312)2 1422)7 1479)4 1521)7

Present 1060)05 1291)94 1310)67 1441)77 1503)87 1537)08
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Figure 4. Mode shapes of plate with a single sti!ener (Problem 1).

Figure 5. Frequency sensitivity diagram for Problem 1 (single sti!ener): j, height of sti!ener;
, thickness of sti!ener.
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Figure 6. Convergence of parameters for Problem 1 (single sti!ener): }j} modes 1}3, }K} modes
1}4, }m} modes 1}5, }n} modes, 1, 4, 7.
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TABLE 3

In-uence of random errors on the identi,ed parameters for Problem 1 (single sti+ener)

Selected mode combinations

Modes 1, 2, 3 Modes 1, 2, 3, 4 Modes 1, 2, 3, 4, 5 Modes 1, 2, 4, 7
Percentage random Percentage random Percentage random Percentage random

error error error error

Parameters 5% 10% 5% 10% 5% 10% 5% 10%

E (GPa) Mean 68)86 69)25 68)83 68)74 68)93 69)35 68)7 68)67
Standard deviation 0)67 1)1 0)87 1)18 0)38 0)31 0)75 0)97
Percentage error 0)08 0)5 0)18 0)23 (10~2 0)65 0)29 0)33

l Mean 0)3 0)3 0)3 0)3 0)3 0)3 0)3 0)3
Standard deviation 0)08 0)1 0)08 0)1 0)08 0)1 0)07 0)02
Percentage error (10~2 (10~2 (10~2 (10~2 (10~2 (10~2 (10~2 (10~2

h (mm) Mean 12)84 12)91 12)57 12)53 12)98 12)92 12)69 12)7
Standard deviation 0)65 1)28 0)62 1)07 (10~2 0)06 0)06 0)13
Percentage error 1)11 1)71 0)96 1)36 1)73 2)2 (10~2 (10~2

th (mm) Mean 6)18 6)11 6)32 6)41 6)49 6)5 6)36 6)38
Standard deviation 0)21 0)31 0)23 0)41 (10~2 0)01 0)22 0)42
Percentage error 2)64 3)78 0)47 0)94 2)2 2)36 (10~2 (10~2
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10.2. PROBLEM 2: CROSS-STIFFENED CLAMPED PLATE

The cross-sti!ened plate of reference [30], [31] has been investigated. The details
are given in Figure 7. Measurement locations are the same as in problem 1 and
given in Figure 3. The parameters chosen for updating are the same as the previous
problem. The convergence of modes with mesh divisions and comparison with
references are presented in Tables 1 and 2. In fact the results shown in references
[30, 31] are for elastically restrained edges; as such, the frequencies are less
compared to fully clamped boundary conditions. Observations of mode shapes in
Figure 8 and the frequency sensitivity diagram in Figure 9 indicate that for
estimating the height of the sti!ener and thickness, the best choice of modes are 1, 2,
3 and 6. Since the frequencies 2 and 3 are numerically the same, only one of these is
used to avoid numerical ill-conditioning, as it happens in the case of repeated and
pseudo-repeated modes.

As shown in Figure 10, the convergence is best when modes 1, 2, 5 and 6 are
included. The convergence is somewhat poor when mode 6 is excluded, as expected.
However, all the results have been converged properly before 10 iterations.

In the presence of noise, as shown in Table 4, E value is most stable when lower
modes are involved. The height of the sti!ener is best estimated with modes 1, 2, 5,
6. Thickness estimation is most stable with modes 1, 2, 6. In the absence of noise, the
estimated parameters coincide exactly with the nominal values with the objective
function equal to zero.
Figure 7. Cross-sti!ened plate with two sti!eners: ¸"203 mm, t
p
"1)37 mm, t

s
"2)03 mm,

h
s
"3)425 mm, E"68)9 GPa, l"0)3, o"2670 kg/m3.



Figure 8. Mode shapes of plate with cross-sti!eners (Problem 2).
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10.3. PROBLEM 3: MULTI-STIFFENED 2]4 BAY STIFFENED PLATE

The multi-sti!ened plate of reference [32] is solved here and the details are given
in Figure 11. The measurement points are shown in Figure 12. The parameters
chosen for model updating are Young's modulus E, the Poisson ratio l, the height
of the sti!ener h, the thickness of the shorter sti!ener th1 and the thickness of the
longer sti!ener th2. Here the number of variables are increased by one. The plate is
rectangular and a mesh division of 16]10 is found to be adequate. As indicated in
Tables 1 and 2, the frequencies compare well and converge properly. The mode
shape diagram in Figure 13 and the frequency sensitivity diagram in Figure 14
indicate that the choice of modes for estimation of thickness is di$cult as it is less
sensitive.

As shown in Figure 15, mode combination 1, 2 and 3 has provided smooth
convergence for all parameters, except the thickness of the longer sti!ener. By



Figure 9. Frequency sensitivity diagram for Problem 2 (cross-sti!eners): j, height of sti!ener;
, thickness of sti!ener.
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excluding mode 1, the convergence for the height of sti!ener has deteriorated. The
convergence de"nitely improves by inclusion of all six modes, except for the
thickness of longer sti!ener.

In the presence of noise, as shown in Table 5, E values are estimated more
accurately when lower modes are involved. By the exclusion of mode 1, the
standard deviation of estimated height of the sti!ener has increased. One
counterintuitive result is obtained by estimating the thickness of longer sti!ener.
The estimated value is worst when all the 6 modes are included. This is due to the
fact that the amount of error is also increased with increased information, as more
and more noisy data are included.

The computer code has been written in FORTRAN77 and executed on a DEC
ALPHA 1200 super minicomputer. The system time requirements to run the
optimization program for a particular set of initial data and with 10 iterations were
0)5, 0)6 and 0)9 s for Problems 1, 2 and 3 respectively.

11. A BRIEF NOTE ABOUT THE REAL EXPERIMENTAL SET-UP

The set-up used for actual modal testing typically consists of an excitation
mechanism, a transduction mechanism and an analyser.

The source for excitation signal can be sinusoidal, random, transient, periodic,
etc. Impact excitation using hammer blow is one of the most common methods
used, which produces a broadband excitation with minimum amount of equipment
and set-up. To measure the force and responses, piezoelectric transducers are used
extensively. Acceleration signals are measured with accelerometers, whereas the
applied force is measured with force transducers. The most commonly used
analyser is the spectrum analyser, where all the frequency components of the
time-varying input/output complex signals are Fourier transformed and stored in
a computer-like microprocessor. A suitable data-acquisition system is used to store



Figure 10. Convergence of parameters for Problem 2 (cross-sti!ener): }j} modes 1, 2, 4, }K}
modes 1, 2, 6, }m} modes 1, 2, 4, 5, }n} modes 1, 2, 5, 6.
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TABLE 4

In-uence of random errors on the identi,ed parameters for Problem 2 (cross-sti+eners)

Selected mode combinations

Modes 1, 2, 4 Modes 1, 2, 6 Modes 1, 2, 4, 5 Modes 1, 2, 5, 6
Percentage random Percentage random Percentage random Percentage random

error error error error

Parameters 5% 10% 5% 10% 5% 10% 5% 10%

E (GPa) Mean 69)21 69)57 69)02 69)09 68)55 69)26 68)85 68)29
Standard deviation 0)66 0)59 0)36 0)71 0)4 0)8 0)46 1)00
Percentage error 0)5 0)9 0)17 0)27 0)52 0)5 (0)01 0)88

l Mean 0)3 0)3 0)3 0)3 0)3 0)3 0)3 0)3
Standard deviation (0)01 (0)1 (0)01 (0)01 (0)01 (0)01 (0)01 (0)01
Percentage error * * * * * * * *

h (mm) Mean 2)00 2)01 2)056 2)055 2)054 2)061 2)051 2)06
Standard deviation 0)016 0)014 (0)001 (0)001 (0)001 (0)001 0)016 0)017
Percentage error 2)67 2)18 (0)01 (0)01 (0)01 (0)01 0)19 0)24

th (mm) Mean 2)02 2)01 2)03 2)029 2)031 2)032 2)031 2)031
Standard deviation 0)016 0)018 (0)001 (0)001 (0)001 0)015 (0)01 (0)01
Percentage error 0)63 1)13 (0)01 (0)01 0)05 0)09 * *
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Figure 11. Multi-sti!ened clamped plate with four sti!eners. ¸
1
"304)5 mm, t

p
"1)37 mm;

t
s2
"6)35 mm, E"71 GPa, o"2700 kg/m3, ¸

2
"203 mm, t

s1
"2)117 mm, h

s
"12)7 mm, l"0)3.

Figure 12. Measurement locations for Problem 3: L, measurement locations.
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this raw data in a PC's hard drive for further modal analysis to obtain the modal
parameters.

For measuring the mode shapes using impact hammer, the response is measured
at a single point whereas the excitation is applied separately at each point in turn.
The measurement points which are actually used for updating, in the case of
sti!ened structures, depend upon the position, orientation and rigidity of sti!ener.



Figure 13. Mode shapes of plate with multiple sti!ener (Problem 3).

Figure 14. Frequency sensitivity diagram of Problem 3 (multi-sti!ened plate). j , height of sti!ener;
K , thickness of shorter sti!ener; , thickness of longer sti!ner.
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Figure 15. Convergence of parameters for Problem 3 (multiple sti!ener): }j} modes 1, 2, 3, }K}
modes 2, 3, 4, }n} modes 1}6.

ESTIMATION OF ELASTIC AND GEOMETRICAL PARAMETERS OF STIFFENED PLATES 121
The points which are located right over a heavy sti!ener may produce very low
signal level. Therefore, these points are prone to error specially in the case of noisy
environment and may cause numerical instability in the updating algorithm and
should be avoided.

12. CONCLUSION

An iterative method to determine the in-plane material parameters as well as the
cross-sectional dimensions of rectangular sti!ener of isotropic sti!ened plate has
been proposed in this paper. It is for the "rst time that a sti!ened plate problem of



TABLE 5

In-uence of random errors on the identi,ed parameters for Problem 3
(multiple-sti+eners)

Selected mode combinations

Modes 1, 2, 3 Modes 2, 3, 4 Modes 1, 2, 3, 4, 5, 6
Percentage Percentage Percentage

random error random error random error

Parameters 5% 10% 5% 10% 5% 10%

E (GPa) Mean 71)02 71)03 71)22 71)23 71)14 71)19
Standard deviation 0)62 0)62 0)22 0)22 0)54 0)54
Percentage error 0)03 0)04 0)3 0)3 0)19 0)27

l Mean 0)291 0)292 0)29 0)29 0)3 0)3
Standard deviation (0)01 (0)01 (0)01 (0)01 (0)01 (0)01
Percentage error * * * * * *

h (mm) Mean 11)32 11)32 11)32 11)31 11)32 11)31
Standard deviation 0)07 0)07 0)09 0)09 0)07 0)08
Percentage error 0)09 0)09 * * * *

th1 (mm) Mean 2)117 2)117 2)117 2)117 2)117 2)117
Standard deviation (0)01 (0)01 (0)01 (0)01 (0)01 (0)01
Percentage error * * * * * *

th2 (mm) Mean 6)345 6)345 6)345 6)345 6)24 6)23
Standard deviation (0)01 (0)01 (0)01 (0)01 0)45 0)50
Percentage error * * * * 1)73 1)88
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this nature has been investigated. This is also for the "rst time that the
Levenberg}Marquardt algorithm, using non-linear least squares has been
implemented for identi"cation of parameters in plated structures. Although it is
computer intensive, the methodology is found to be robust and working well even
in the presence of random noise. As the method includes eigenvector information,
along with frequencies, only a few modes are to be measured to estimate a number
of parameters simultaneously. The method is found to be precise and stable under
certain bounds over the variables, which can usually be chosen realistically from
practical consideration. The proposed method may "nd useful application in
characterizing material properties of existing sti!ened structure in real
environment. This is suitable for o!-line mdoel updating problems where accuracy
is most important. The major contribution of this paper is the estimation of
material and geometric parameters simultaneously and their interaction in a
spatially incomplete experimentally obtained data set. In fact, the sensitivity of the
cross-sectional dimensions of the sti!eners shows that even a slight manufacturing
defect in dimensions may well be misunderstood as the change in material property,
which actually is not. Through the process of updating it estimates an equivalent
cross-sectional dimensions which actually takes care of the variation in sectional
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dimensions along the length of the sti!ener. It also suggests that each problem is
case-speci"c and certain mode combinations are better than the others. Also,
certain co-ordinates are best suited for measuring the mode shape depending
upon the position and orientation of sti!eners, which vary from one problem to
the other.
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